DÉRIVATION LOCALE

CORRECTION DES EXERCICES

NOMBRE DÉRIVÉ ET TANGENTE

Exercice 1:

Citons parmi les droites, celles qui semblent être des tangentes à la courbe et précisons le cas échéant en quel point:

- La droite T_2 est tangent à la courbe au point b'abscisse -1.
- La droite T_3 est tangent à la courbe au point b'abscisse 1.
- La droite T_4 est tangent à la courbe au point b'abscisse 0.
- La droite T_5 est tangent à la courbe au point b'abscisse -1.36.

Exercice 2:

1. Déterminons par lecture graphique, l'équation de la tangente \mathcal{T} :

Par lecture graphique, on remarque que la tangente a pour coefficient directeur -2 et passe par le point de coordonnées (0,2), ainsi, la tangente a pour équation y=-2x+2.

- **2.** Déduisons f'(1).
 - De ce qui précède, le coefficient directeur de la tangente à la courbe \mathcal{C} au point d'abscisse 1 est -2 donc f'(1) = -2.
- 3. Déterminons par lecture graphique, les valeurs de x_0 pour lesquelles $f'(x_0) = 0$.

Les valeurs de x_0 pour lesquelles $f'(x_0) = 0$ sont les valeurs des abscisses des points de la courbe en lesquelles la courbe admet une tangente horizontale.

Ainsi, les points en lesquels la courbe admet des tangentes horizontales sont: le point d'abscisse 0 et le point d'abscisse -1. Par conséquent, f'(0) = 0 et f'(-1) = 0.

Exercice 3:

1. Déterminons par lecture graphique, f'(-1).

f'(-1) est le coefficient directeur de la tangente à la courbe au point d'abscisse -1.

La tangente à la courbe au point d'abscisse -1 passe par les points de coordonnées (-1,2) et (2,-2)

Le coefficient directeur de la tangente est donc $\frac{-2-2}{2-(-1)} = -\frac{4}{3}$

(Il est facile de lire le coefficient directeur de la tangente directement sur le graphique.)

D'où
$$f'(-1) = -\frac{4}{3}$$

2. Déduisons l'équation de la tangente \mathcal{T} .

$$T: y = f'(-1)(x - (-1)) + f(-1)$$

De ce qui précède $f'(-1) = -\frac{4}{3}$ et par lecture graphique on a f(-1) = 2 donc on a:

$$T: y = -\frac{4}{3}(x+1) + 2 \Leftrightarrow T: y = -\frac{4}{3}x - \frac{4}{3} + 2.$$

D'où
$$T: y = -\frac{4}{3}x + \frac{2}{3}$$

Exercice 4:

Donnons, par lecture graphique, les valeurs des nombres:

•
$$g(-4) = 1$$
 et $g'(-4) = 5$

•
$$g(0) = -1$$
 et $g'(0) = -1$

•
$$g(4) = 4$$
 et $g'(4) = \frac{5}{2}$.

Exercice 5:

1. Donnons, par lecture graphique, la valeur de f'(1)..

La tangente T passe par les points de coordonnées (0,3) et (2,-1).

D'où par lecture graphique f'(1) = -2

- **2.** Oui, la parabole \mathcal{P} admet une tangente au point d'abscisse 0, car la fonction f étant une fonction polynôme, elle est définie et dérivable en 0 et f'(0) = 0
- 3. Donnons l'équation de la tangente au point d'abscisse 0. L'équation de la tangente au point d'abscisse 0 est : y=2

Exercice 6:

- Donnons, par lecture graphique, la valeur de f'(-1) et l'équation de la tangente \(\mathcal{T} \).
 La tangente T à la parabole \(\mathcal{P} \) au point D d'abscisse -1 est horizontale alors f'(-1) = 0.
 L'équation de la tangente \(\mathcal{T} \) est : y = -3
- **2.** Oui, la parabole \mathcal{P} admet une tangente au point d'abscisse -2, car la fonction f étant une fonction polynôme, elle est définie et dérivable en -1.
- 3. Déduisons une équation de la tangente au point d'abscisse -2. Soit T_1 la tangente à la parabole au point d'abscisse -2. $T_1: y = f'(-2)(x - (-2)) + f(-2)$

Déterminons f(-2) et f'(-2).

• D'après le graphe, f(-2) = -1.

 \bullet Soit h un réel non nul.

$$f'(-2) = \lim_{h \to 0} \frac{f(-2+h) - f(-2)}{h}$$

$$= \lim_{h \to 0} \frac{2(-2+h)^2 + 4(-2+h) - 1 - (-1)}{h}$$

$$= \lim_{h \to 0} \frac{2(4-4h+h^2) - 8 + 4h - 1 + 1}{h}$$

$$= \lim_{h \to 0} \frac{8 - 8h + 2h^2 - 8 + 4h}{h}$$

$$= \lim_{h \to 0} \frac{2h^2 - 4h}{h}$$

$$= \lim_{h \to 0} 2h - 4$$

$$f'(-2) = -4$$

Ainsi,
$$T_1: y = -4(x+2) - 1 \Leftrightarrow T_1: y = -4x - 8 - 1$$

D'où $T_1: y = -4x - 9$

Exercice 7:

- **1.** Donnons, par lecture graphique, les valeurs de f'(0), f'(1) et f'(-1).
 - f'(0) = -3
 - f'(1) = 0
 - f'(-1) = 0
- 2. Donnons, par lecture graphique, les équations des tangentes à la courbe C_f aux points d'abscisses 1 et -1.
 - Au point d'abscisse 1, l'équation de la tangente est: y = -1
 - Au point d'abscisse -1, l'équation de la tangente est: y=3
- **3.** Déterminons l'équation de la tangente à la courbes C_f au point d'abscisse 0.

Soit T l'équation de la tangente au point d'abscisse 0.

$$T: y = f'(0)(x - 0) + f(0)$$

On a: $f'(0) = -3$ et $f(0) = 1$
D'où $T: y = -3x + 1$

Exercice 8:

La fonction f est la fonction carré, alors $f(x) = x^2$

1. Donnons une équation de la tangente T_A à la courbe C_f au point A d'abscisse $x_A = 1$.

$$T_A: y = f'(x_A)(x - x_A) + f(x_A)$$

Donc $T_A: y = f'(1)(x - 1) + f(1)$
Déterminons $f(1)$ et $f'(1)$.

- $f(1) = 1^2 = 1$ donc f(1) = 1
- \bullet Soit h un réel non nul.

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{(1+h)^2 - 1^2}{h}$$

$$= \lim_{h \to 0} \frac{1 + 2h + h^2 - 1}{h}$$

$$= \lim_{h \to 0} \frac{2h + h^2}{h}$$

$$= \lim_{h \to 0} 2 + h$$

$$f'(1) = 2$$

Ainsi, $T_A: y = 2(x-1) + 1$ donc $T_A: y = 2x - 1$

2. Donnons l'équation de la tangente à C_f au point d'abscisse $x_0 = -1$ et parallèle à la droite d'équation y = -2x + 5. Soit T: y = ax + b une tangente à C_f parallèle à la droite d'équation y = -2x + 5.

T étant parallèle à la droite y=-2x+5 alors elles ont le même coefficient directeur donc a=-2 et T:y=-2x+b Déterminons b.

On a :
$$f(x_0) = f(-1) = (-1)^2 = 1$$

Donc $1 = -2 \times x_0 + b \Leftrightarrow 1 = -2 \times (-1) + b \Leftrightarrow b = -1$
D'où $T: y = -2x - 1$

Exercice 9:

La fonction g est la fonction cube alors $g(x) = x^3$

1. Donnons l'équation de la tangente T_B à la courbe C_g au point B d'abscisse $x_B = -3$.

$$T_B: y = g'(x_B)(x - x_B) + g(x_B)$$

Donc $T_B: y = g'(-3)(x + 3) + g(-3)$.
Déterminons $g(-3)$ et $g'(-3)$

- $g(-3) = (-3)^3 = -27$ donc g(-3) = -27
- Soit h un réel non nul.

$$g'(-3) = \lim_{h \to 0} \frac{g(-3+h) - g(-3)}{h}$$

$$= \lim_{h \to 0} \frac{(-3+h)^3 - (-27)}{h}$$

$$= \lim_{h \to 0} \frac{(9-6h+h^2)(-3+h) + 27}{h}$$

$$= \lim_{h \to 0} \frac{-27 + 9h + 18h - 6h^2 - 3h^2 + h^3 + 27}{h}$$

$$= \lim_{h \to 0} \frac{27h - 9h^2 + h^3}{h}$$

$$= \lim_{h \to 0} 27 - 9h + h^2$$

$$g'(-3) = 27$$

Ainsi,
$$T_B: y = 27(x+3) - 27$$
 donc $T_B: y = 27x + 54$

2. Vérifions s'il existe une tangente à la courbe C_g parallèle à la droite d'équation y = -3x + 2.

Soit T la tangente à la courbe C_g parallèle à la droite d'équation y = -3x + 2.

Supposons que T est tangent à la courbe \mathcal{C}_g en un point d'abscisse x_0 .

On a donc $T: y = g'(x_0)(x - x_0) + g(x_0)$.

T étant parallèle à la droite d'équation y = -3x + 2 alors elles ont le même coefficient directeur donc $g'(x_0) = -3$.

La fonction g est une fonction polynôme, alors elle est continue et dérivable sur \mathbb{R} , de fonction dérivée: $g'(x) = 3x^2$

Ainsi,
$$g'(x_0) = -3 \Leftrightarrow 3x_0^2 = -3 \Leftrightarrow x_0^2 = -1$$

Ce qui est ABSURDE car pour tout $x \in \mathbb{R}, x^2 \geq 0$.

Par conséquent, il n'existe aucune tangente à la courbe C_g qui soit parallèle à la droite d'équation y = -3x + 2

Exercice 10:

La fonction h est la fonction inverse alors $h(x) = \frac{1}{x}$

1. Donnons l'équation de la tangente T_C à la courbe C_f au point C d'abscisse $x_C = 2$.

$$T_C: y = h'(x_C)(x - x_C) + h(x_C)$$

Donc
$$T_C: y = h'(2)(x-2) + h(2)$$

Déterminons h(2) et h'(2)

$$\bullet \ h(2) = \frac{1}{2}$$

 \bullet Soit k un réel non nul

$$h'(2) = \lim_{k \to 0} \frac{h(2+k) - h(2)}{k}$$
$$= \lim_{k \to 0} \frac{\frac{1}{2+k} - \frac{1}{2}}{k}$$

$$h'(2) = \lim_{k \to 0} \frac{\frac{2 - (2 + k)}{2(2 + k)}}{k}$$

$$= \lim_{k \to 0} \frac{\frac{-k}{2k(2 + k)}}{\frac{-1}{2(2 + k)}}$$

$$= \lim_{k \to 0} \frac{-1}{4 + 2k}$$

$$= -\frac{1}{4}$$

Ainsi,
$$T_C: y=-\frac{1}{4}(x-2)+\frac{1}{2} \Leftrightarrow -\frac{1}{4}x+\frac{1}{2}+\frac{1}{2}$$

D'où $T_C: y=-\frac{1}{4}x+1$

2. Prouvons que la droite T_C est parallèle à une autre tangente à la courbe C_h en un point dont on déterminera l'abscisse. Soit T la tangente à la courbe C_h en un point x_0 et parallèle à la tangente T_C .

$$T: y = h'(x_0)(x - x_0) + h(x_0)$$

T étant parallèle à la tangente $T_C: y = -\frac{1}{4}x$ alors elles ont le même coefficient directeur donc $h'(x_0) = -\frac{1}{4}$

La fonction $h(x) = \frac{1}{x}$ est une fonction rationnelle, et pour tout $x \in \mathbb{R}^*, x \neq 0$, alors elle est continue et dérivable sur son domaine de définition \mathbb{R}^* .

Donc pour tout $x \in \mathbb{R}^*$, $h'(x) = -\frac{1}{x^2}$, ainsi:

$$h'(x_0) = -\frac{1}{4} \Leftrightarrow -\frac{1}{x_0^2} = -\frac{1}{4}$$

$$-\frac{1}{x_0^2} = -\frac{1}{4} \Leftrightarrow x_0^2 = 4$$
$$\Leftrightarrow x_0 = -2 \text{ ou } x_0 = 2$$

Par conséquent, la tangente T_C est parallèle à une autre tangente à la courbe C_h en un point d'abscisse $x_0 = -2$

Déterminons une équation de cette tangente.

$$T: y = h'(-2)(x+2) + h(-2)$$
 On a: $h(-2) = -\frac{1}{2}$ et $h'(-2) = -\frac{1}{4}$ Donc $T: y = -\frac{1}{4}(x+2) - \frac{1}{2} \Leftrightarrow T: y = -\frac{1}{4}x - \frac{1}{2} - \frac{1}{2}$ D'où $T: y = -\frac{1}{4}x - 1$