Corrigé 1:Droite et polynôme du second degré

logo pdf
4.9/5 (10 votes)
Cours de mathématiques en ligne

Contrôle corrigé de mathématiques donné aux premières du lycée Émilie de Rodat à Toulouse. Notions abordées : équation cartésienne et de équation réduite d’une droite, point d’intersection de deux droites sécantes, résolution d’une équation du second degré en utilisant le discriminant et forme canonique d’un trinôme.

téléchargement pdfL’énoncé du contrôle en pdf

controle1

correction Je consulte la correction détaillée!

astuces de résolution Je préfère les astuces de résolution !

Equations cartésienne et réduite de droites

1- Se rappeler la forme générale de l’équation cartésienne d’une droite, en utilisant son vecteur directeur.
2- Obtenir à partir de l’équation cartésienne précédente, l’équation réduite et en déduire le coefficient directeur.
3- Déterminer en utilisant les points B et C de la droite un vecteur directeur et utiliser la méthode de votre choix.
4- Déduire de l’équation cartésienne précédente l’équation réduite.
5- Déterminer le couple solution du système formé à partir des équations des deux droites.

Déterminant de deux vecteurs et intersection de deux droites.

1- Déterminer le vecteur AM puis utiliser la définition du déterminant de deux vecteurs.
2- Déterminant de deux vecteurs colinéaires.
3- Remplacer les coordonnées du point B dans l’équation cartésienne et vérifier
4- Déterminer le couple solution du système formé à partir de l’équation de la droite et de l’équation de l’axe des ordonnées.

Résolution d’équations du second degré

1- Calculer le discriminant, son signe permet de déterminer la ou les solutions éventuelles de l’équation si elle(s) existe(ent).
2- Observer le signe du discriminant

Courbe représentative et forme canonique

1- Utiliser un point de la représentation qui vérifie l’une des fonctions et pas l’autre puis conclure.
2- Se rappeler de la forme canonique d’un trinôme et faire les calculs.
3- a) Les deux courbes se coupent lorsque les fonctions sont égales
b) Résoudre l’équation précédente; utiliser les abscisses trouvées pour déterminer les ordonnées correspondantes

Besoin des contrôles dans un
chapitre ou un lycée particulier ?

S’abonner
Notifier de
guest
3 Commentaires
Inline Feedbacks
Voir tous les commentaires
mentiontresbien31
Administrateur
4 années il y a

Super boulot ! Merci mille fois !

océanne
océanne
3 années il y a

Bonjour, il y a une différence entre l’énoncé de l’exercice 4 et sa correction :
Dans l’énoncé on nous donne  g(x) = − 2x**2 – 3x + 1
Et dans la correction 2. on nous donne g(x) = 2x**2 + 3x + 1

Balthazar Tropp
Administrateur
Reply to  océanne
3 années il y a

Bonjour,
merci pour votre remarque ! Vous avez tout à fait raison, nous allons corriger ça !